HiperPFS-3
다양한부하범위에서높은PF와효율을위해최적화된Qspeed다이오드및고전압MOSFET이집적된PFC컨트롤러
애플리케이션
제품
|
제품
|
데이터시트
|
출력전력(최대)-마디없는,범용
|
출력전력(최대)-피크,범용
|
출력전력(최대)-마디없는,230v
|
출력전력(최대)-피크,230v
|
IC패키지
|
입력전압(최소)
|
입력전압(최대)
|
토폴로지
|
보호 기능
|
항복 전압
|
시동 전압
|
전원전압(Vcc/Vdd)
|
과열 반응
|
장착 유형
|
상품 유형
|
작동온도(최대)
|
작동온도(최소)
|
자동재시작및과전압응답
|
출력프로파일
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
数据表
PDF보기
|
输出功率(最大)-连续,大学
110 W
|
输出功率(最大)-峰值,大学
120 W
|
|
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
90 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
0.74 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
输出功率(最大)-连续,大学
110 W
|
输出功率(最大)-峰值,大学
120 W
|
|
|
集成电路方案
eSIP-16G
|
电压-输入(Min)
90 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
0.74 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
输出功率(最大)-连续,大学
130 W
|
输出功率(最大)-峰值,大学
150 W
|
|
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
90 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
0.74 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
输出功率(最大)-连续,大学
130 W
|
输出功率(最大)-峰值,大学
150 W
|
|
|
集成电路方案
eSIP-16G
|
电压-输入(Min)
90 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
0.74 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
输出功率(最大)-连续,大学
185 W
|
输出功率(最大)-峰值,大学
205 W
|
|
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
90 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
0.74 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
输出功率(最大)-连续,大学
185 W
|
输出功率(最大)-峰值,大学
205 W
|
|
|
集成电路方案
eSIP-16G
|
电压-输入(Min)
90 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
0.74 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
输出功率(最大)-连续,大学
230 W
|
输出功率(最大)-峰值,大学
260 W
|
|
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
90 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
0.74 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
输出功率(最大)-连续,大学
290 W
|
输出功率(最大)-峰值,大学
320 W
|
|
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
90 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
0.74 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
输出功率(最大)-连续,大学
350 W
|
输出功率(最大)-峰值,大学
385 W
|
|
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
90 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
0.74 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
输出功率(最大)-连续,大学
405 W
|
输出功率(最大)-峰值,大学
450 W
|
|
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
90 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
0.74 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
|
|
输出功率(最大)-连续,230V
255 W
|
输出功率(最大)-峰值,230V
280 w
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
180 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
1.57 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
|
|
输出功率(最大)-连续,230V
315 W
|
输出功率(最大)-峰值,230V
350 w
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
180 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
1.57 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
|
|
输出功率(最大)-连续,230V
435 W
|
输出功率(最大)-峰值,230V
480 w
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
180 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
1.57 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
|
|
输出功率(最大)-连续,230V
550 W
|
输出功率(最大)-峰值,230V
610 w
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
180 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
1.57 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
|
|
输出功率(最大)-连续,230V
675 W
|
输出功率(最大)-峰值,230V
750 w
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
180 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
1.57 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
|
|
输出功率(最大)-连续,230V
810 W
|
输出功率(最大)-峰值,230V
900 w
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
180 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
1.57 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
||
数据表
PDF보기
|
|
|
输出功率(最大)-连续,230V
900 W
|
输出功率(最大)-峰值,230V
1000 w
|
集成电路方案
eSIP-16D
|
电压-输入(Min)
180 V
|
电压-输入(最大)
264 V
|
拓扑结构
提高PFC
|
保护功能
输出欠压,过温,输入过压,输入欠压,输出过压,输出短路,输出过载
|
击穿电压
530 V
|
电压-启动
1.57 v
|
电压-电源(Vcc/Vdd)
12 v
|
超高温反应
滞后
|
越来越多的类型
通孔
|
产品类型
集成电路
|
温度-运行(最高)
150°C
|
温度-操作(Min)
-40°C
|
自动重启和过压响应
滞后
|
输出配置文件
CC
|
HiperPFS™3디바이스제품군은CCM(连续导电模式)부스트PFC컨트롤러,게이트드라이버,매우낮은역회복다이오드,고전압파워MOSFET등을하나의소형히트싱크패키지로통합합니다。HiperPFS-3제품군은20%부하시하이라인의역률0.92을보다더높게해주는디지털인핸서와60 mw미만의무부하소비전력을제공하는효율적인”경부하”작동모드를갖추고있습니다。
HiperPFS-3제품군의가변주파수CCM(连续导电模式)작동방식은낮은평균스위칭주파수를유지하고주파수변조및피크EMI억제를통해손실이최소화됩니다。HiperPFS-3을사용하는시스템은일반적으로컨버터의총X및Y커패시턴스요구사항은물론이고부스트초크와EMI노이즈억제초크모두의인덕턴스가최소화되어전반적인시스템크기와비용이줄어듭니다。
HiperPFS-3디바이스는최소한의외부부품만을필요로하고,보드공간및시스템BOM비용이줄어들며,센싱레지스터와연관된전력손실이적습니다。